Young Tableaux, Nakajima Monomials, and Crystals for Special Linear Lie Algebras

نویسنده

  • HYEONMI LEE
چکیده

Nakajima introduced a certain set of monomials characterizing the irreducible highest weight crystals B(λ). The monomial set can be extended so that it contains B(∞) in addition to B(λ). We give explicit new realizations of the crystals B(∞) and B(λ) over special linear Lie algebras in the language of extended Nakajima monomials. Also, we introduce Young tableau realization of the crystal B(∞) for the same type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nakajima Monomials and Crystals for Special Linear Lie Algebras

The theory of Nakajima monomials is a combinatorial scheme for realizing crystal bases of quantum groups. Nakajima introduced a certain set of monomials realizing the irreducible highest weight crystals in [16]. Kashiwara and Nakajima independently defined a crystal structure on the set of Nakajima monomials and also gave a realization of irreducible highest weight crystal B(λ) in terms of Naka...

متن کامل

Monomial Realization of Crystals B(∞) and B(λ) for Special Linear Lie Algebras

Nakajima introduced a certain set of monomials characterizing the irreducible highest weight crystals. The monomial set can be extended so that it contains B(∞) in addition to B(λ). We give explicit new realizations of the crystals B(∞) and B(λ) over special linear Lie algebras.

متن کامل

Compression of Nakajima monomials in type A and C

We describe an explicit crystal morphism between Nakajima monomials and monomials which give a realization of crystal bases for finite dimensional irreducible modules over the quantized enveloping algebra for Lie algebras of type A and C. This morphism provides a connection between arbitrary Nakajima monomials and Kashiwara–Nakashima tableaux. This yields a translation of Nakajima monomials to ...

متن کامل

Monomial Relization of Crystal Bases for Special Linear Lie Algebras

We give a new realization of crystal bases for finite dimensional irreducible modules over special linear Lie algebras using the monomials introduced by H. Nakajima. We also discuss the connection between this monomial realization and the tableau realization given by Kashiwara and Nakashima. Introduction The quantum groups, which are certain deformations of the universal enveloping algebras of ...

متن کامل

0 O ct 2 00 3 GEOMETRIC AND COMBINATORIAL REALIZATIONS OF CRYSTAL GRAPHS

For irreducible integrable highest weight modules of the finite and affine Lie algebras of type A and D, we define an isomorphism between the geometric realization of the crystal graphs in terms of irreducible components of Nakajima quiver varieties and the combinatorial realizations in terms of Young tableaux and Young walls. For type A (1) n , we extend the Young wall construction to arbitrar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005